LAJU REAKSi


 1. Pengertian Laju Reaksi

Laju reaksi adalah laju penurunan reaktan (pereaksi) atau laju bertambahnya produk (hasil reaksi). Laju reaksi ini juga menggambarkan cepat lambatnya suatu reaksi kimia, sedangkan reaksi kimia merupakan proses mengubah suatu zat (pereaksi) menjadi zat baru yang disebut sebagai produk. Reaksi kimia digambarkan seperti pada bagan berikut.

Beberapa reaksi kimia ada yang berlangsung cepat. Natrium yang dimasukkan ke dalam air akan menunjukkan reaksi hebat dan sangat cepat, begitu pula dengan petasan dan kembang api yang disulut. Bensin akan terbakar lebih cepat daripada minyak tanah. Namun, ada pula reaksi yang berjalan lambat. Proses pengaratan besi, misalnya, membutuhkan waktu sangat lama sehingga laju reaksinya lambat. Cepat lambatnya proses reaksi kimia yang berlangsung dinyatakan dengan laju reaksi. Dalam mempelajari laju reaksi digunakan besaran konsentrasi tiap satuan waktu yang dinyatakan dengan molaritas. Apakah yang dimaksud molaritas? Simak uraian berikut.

1.1. Molaritas sebagai Satuan Konsentrasi dalam Laju Reaksi

Molaritas menyatakan jumlah mol zat dalam 1 L larutan, sehingga molaritas yang dinotasikan dengan M, dan dirumuskan sebagai berikut.

M = n/V

Keterangan :

n = jumlah mol dalam satuan mol atau mmol
V = volume dalam satuan L atau mL

Bagaimana cara menggunakan dan menghitung molaritas? Kalian akan mengetahuinya dari contoh-contoh soal berikut.

Contoh Soal Molaritas (1) :

Sebanyak 17,1 g sukrosa (Mr = 342) dilarutkan dalam air hingga volume larutan 500 mL. Tentukan kemolaran sukrosa.

Penyelesaian:

Diketahui :

Mr sukrosa = 342
Massa (m) sukrosa = 17,1 g
Volume larutan = 500 mL

Ditanyakan :

Molaritas sukrosa.

Jawaban :

n sukrosa = massa/Mr = 171/342 = 0,05 mol = 50 mmol

M sukrosa = n/V = 50 mmol / 500 mL = 0,1 M

Jadi, molaritas sukrosa tersebut adalah 0,1 M.

Contoh Soal Molaritas (2) :

Berapa gram soda kue (NaHCO3) yang diperlukan untuk membuat 150 mL larutan NaHCO3 0,5 M? (Ar Na = 23, H = 1, C = 12, 0 = 16)

Pembahasan :

Diketahui :

Molaritas NaHCO3 = 0,5 M= 0,5 mol/L
Volume larutan = 150 mL = 0,15 L

Ditanyakan :

Massa NaHCO3 ?

Jawaban :

n =M xV = 0,5 mol/L x 0,15 L = 0,075 mol
massa = mol x Mr = 0,075 x 84 = 6,3 g

Jadi, massa soda kue tersebut adalah 6,3 g.

Pembuatan suatu larutan dapat juga dilakukan dengan mengencerkan larutan yang sudah ada, dengan catatan molaritas larutan yang akan dibuat lebih rendah dari molaritas larutan yang sudah ada. Misalnya di laboratorium hanya ada larutan HCl 1 M, sedangkan kita memerlukan larutan HCl 0,5 M sebanyak 100 mL, bagaimana kita mendapatkannya?

Gambar 1. Pengenceran.
Pada gambar 1 (a) :

sebelum pengenceran
V = V1
M = M1
n = n1

Pada gambar 1 (a) :

sebelum pengenceran
V = V2
M = M2
n = n2

Dalam pengenceran, jumlah zat terlarut tidak berubah sehingga jumlah molnya tetap. Jadi, n1 = n2 atau M1 x V1 = M2 x V2. Rumus ini biasa disebut sebagai rumus pengenceran.

Dari gambaran cara tcrsebut, maka larutan HC1 0,5 M sebanyak 100 mL dapat dibuat dengan mengencerkan larutan HC1 1M. Volume HC1 1 M yang dibutuhkan dicari melalui rumus pengenceran.

V1 x M1 = V2 x M2
V1 x 1 = 100 x 0,5
V1 = 50 mL

Jadi, kita bisa mclakukannya dengan mengambil 50 mL HC1 1M, kemudian kin masukkan ke dalam labu ukur 100 mL lalu ditambahi air hingga tanda batas, dan 100 ml Larutan HCl 0,5 M telah selesai dibuat.

Gambar 2. Larutan asam sulfat 97%.
Apabila yang tersedia di laboratorium hanya larutan pekat yang diketahui massa jenis dan kadarnya tanpa diketahui konsentrasinya, misalnya larutan asam sulfat dengan kadar 97% dan massa jenisnya 1,8 kg/L, maka molaritas H2SO4 tersebut dapat ditentukan dengan rumusan berikut.

Untuk menghitung molaritas larutan H2SO4 dengan kadar 97% dan massa jenis 1,8 kg/L, kita tinggal memasukkan data ke dalam rumus hingga diperoleh molaritas asam sulfat tersebut sebesar 17,82 M seperti pada perhitungan berikut.


1.2. Rumus Laju Reaksi

Laju reaksi kimia bukan hanya sebuah teori, namun dapat dirumuskan secara matematis untuk memudahkan pembelajaran. Pada reaksi kimia: A → B, maka laju berubahnya zat A menjadi zat B ditentukan dari jumlah zat A yang bereaksi atau jumlah zat B yang terbentuk per satuan waktu. Pada saat pereaksi (A) berkurang, hasil reaksi (B) akan bertambah. Perhatikan diagram perubahan konsentrasi pereaksi dan hasil reaksi pada Gambar 3.

Gambar 3. Diagram perubahan konsentrasi pereaksi dan hasil reaksi.
Berdasarkan gambar tersebut, maka rumusan laju reaksi dapat kita definisikan sebagai:

a. berkurangnya jumlah pereaksi (konsentrasi pereaksi) per satuan waktu, atau :  , dengan r = laju reaksi, - d[R] = berkurangnya reaktan (pereaksi), dan dt = perubahan waktu. Untuk reaksi : A → B, laju berkurangnya zat A adalah : 

b. bertambahnya jumlah produk (konsentrasi produk) per satuan waktu, atau :  , dengan +Δ[P] = bertambahnya konsentrasi produk (hasil reaksi). Untuk reaksi : A → B, laju bertambahnya zat B adalah :  .

Bagaimana untuk reaksi yang lebih kompleks, semisal : pA + qB → rC.

Untuk reaksi demikian, maka :



Dalam perbandingan tersebut, tanda + atau – tidak perlu dituliskan karena hanya menunjukkan sifat perubahan konsentrasi. Oleh karena harga dt masing-masing sama, maka perbandingan laju reaksi sesuai dengan perbandingan konsentrasi. Di sisi lain, konsentrasi berbanding lurus dengan mol serta berbanding lurus pula dengan koefisien reaksi, sehingga perbandingan laju reaksi sesuai dengan perbandingan koefisien reaksi. Perbandingan tersebut dapat dituliskan sebagai berikut.

rA : rB : rC = p : q : r

Perhatikan contoh soal berikut.

Contoh Soal Laju Reaksi (3) :

Pada reaksi pembentukan gas SO3 menurut reaksi: 2SO2(g) + O2(g) → 2SO3(g), sehingga diperoleh data sebagai berikut.

No.         [SO3] mol/L        Waktu (s)
1              0,00        0
2              0,25        20
3              0,50        40

Tentukanlah:

a. Laju bertambahnya SO3
b. Laju berkurangnya SO2
c. Laju berkurangnya O2

Penyelesaian :

Diketahui :

Persamaan reaksi : 2SO2(g) + O2(g) → 2SO3(g)

Data konsentrasi (pada tabel).

Ditanyakan :

a. r SO3.
b. r SO2.
c. r O2.

Jawaban :

a. Δ[SO3] = [SO3]3 – [SO3]2 = 0,50 – 0,25 = 0,25 M
Δt = t3 – t2 = 40 – 20 = 20 s
r SO3 =   =   = 0,0125 M/s

Jadi, laju bertambahnya SO3 sebesar 1,25 x 10–2 M/s.

b. Karena koefisien SO2 = koefisien SO3, maka:
r SO2 = – r SO3 = – 0,0125 M/s

Jadi, laju berkurangnya SO2 sebesar –1,25 x 10–2 M/s

c. r O2 = - ½ x r SO3 = - ½ x 0,0125 = - 0,00625 M/s

Jadi, laju berkurangnya O2 sebesar – 6,25 x 10–3 M/s

Setelah kalian mempelajari apa itu laju reaksi dan bagaimana menentukan besarnya laju reaksi zat dalam persamaan reaksi, maka dapat kalian simpulkan bagaimana cepat lambatnya suatu reaksi kimia berdasarkan laju reaksi zat tersebut. Jika laju reaksi zat itu besar, maka reaksi berlangsung cepat, dan sebaliknya, jika laju reaksi zat kecil, maka reaksi berlangsung lambat. Nah, sebenarnya apa yang mempengaruhi cepat lambatnya laju reaksi kimia? Berikut ini akan kalian pelajari faktor-faktor yang mempengaruhi laju reaksi, termasuk di dalamnya teori tumbukan.


Komentar

Postingan Populer